CASE STUDY

Process Water — Glass Manufacturing São Paulo, Brazil

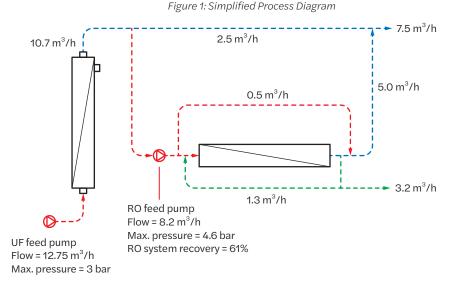
TORAY Innovation by Chemistry

Toray's Integrated Membrane Solution for Water Reuse at a Glass Manufacturing Facility in Brazil

CHALLENGE

Owens Illinois (www.o-i.com), a leading manufacturer of glass packaging, faced challenges in meeting quality standards for cooling tower make-up water at their plant in São Paulo. Wastewater treatment at the plant consisted of physiochemical processes, a biological reactor, sand filter, and charcoal filter for reuse in the cooling towers.

However, the IS (Individual Section) machines, a necessary aspect of the glass modeling process, contaminated the water stream with heavy oil and greases. These conditions made it challenging to meet the target water quality (see Table 2) using conventional treatment. As a result, blending the effluent with other water sources (well water and municipal supply) was required to meet the necessary water quality. Additionally, chemicals to control scaling and microbiological growth became more frequent, further increasing operating costs.


SOLUTION

The end-user selected Ecopolo to design and build an advanced treatment system, incorporating Toray UF modules followed by Toray RO elements as a final polishing step. Ecopolo incorporated the advanced treatment system into the existing conventional process to remove contaminants previously unattainable and continues to operate the wastewater treatment plant today satisfactorily. The UF removes suspended solids, colloidal particles, bacteria, viruses, coliform, partial organic load, and color. The RO reduces dissolved salts, including total hardness, silica, chlorides, and residual organic matter.

Figure 1: RO and UF system — UF system designed and constructed by Ecopolo (<u>www.ecopolo.co.br</u>)

Table 1 – UF/RO Specifications				
Item	UF	RO		
Model	HFU-2020N	TMG20-440C		
Quantity	Four (4) modules	Six (6) elements		
MWCO	150 kDa	Not applicable		
Membrane surface area	72 m²/module	440 ft ²		
Membrane material	PVDF	Polyamide		
Nominal pore size	0.01 µm	Not applicable		
Flux	44.3 L/m²∙h	18.3 L/m ² ·h		
Filtration time	30 minutes	Not applicable		

RO | NF | UF | MBR

Table 2: Quality of the boiler feed make-up water					
Parameter	Unit	Target quality	Reuse water quality (treatment type)		
			Conventional	Advanced RO/UF	
Turbidity	NTU	<10	38	<1	
BOD	mg/L	<10	43	4	
Chloride	mg/L	<30	222	24	
Total Hardness	mg/L CaCO ₃	<50	178	31	
Total Silica	mg/L	<20	25	4	
Total Iron	mg/L	<0.5	0.66	<0.05	

Partners for this project: Owens Illinois (www.o-i.com) Ecopolo (www.ecopolo.co.br)

RESULTS

As indicated in Table 2, the implementation of Toray UF and Toray RO into the existing reuse system led to significant water quality improvements. Further implications include the following:

- > Increase in the concentration cycle from 2 to 3.5, leading to a change in the flow rate and <u>52% reduction in effluent generation</u>.
- > Reduced use of chemicals for controlling scale and other contaminants. Within one year, the plant saw a <u>47% decrease in operating costs</u>.

innovation@toraymem.com

Figure 2: RO system

TORAY MEMBRANE USA, INC.

13435 Danielson Street, Poway, CA 92064, U.S.A.

in LinkedIn 🕒 YouTube

Marks designated with a [™] or [®] are trademarks of Toray Industries, Inc.

All information presented herein is believed reliable and in accordance with accepted engineering practices. Toray makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Toray assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products. © 2021 Toray Industries, Inc. Subject to change without notice.

03-TMUS-IMS-BR-190210

(+1 (858) 218-2360

Figure 3: UF system

