

II-204 - AVALIAÇÃO DAS CONDIÇÕES CONSTRUTIVAS E OPERACIONAIS DO SISTEMA DE TRATAMENTO PRIMÁRIO POR TANQUES SÉPTICOS: ESTUDO DE CASO DA COMUNIDADE DE CAÍPE (SÃO FRANCISCO DO CONDE/BA)

Dulce Buente Moreira Tavares(1)

Engenheira Ambiental e Sanitarista pela Faculdade de Ciência e Tecnologia - Área 1 – DeVry Brasil.

Renavan Andrade Sobrinho(2)

Engenheiro Civil e Engenheiro Sanitarista e Ambiental pela Universidade Federal da Bahia. Pós-graduado em Gestão Empresarial pela Fundação Getúlio Vargas e em Engenharia de Segurança do Trabalho pela Faculdade de Tecnologia e Ciências – FTC. Mestre em Meio Ambiente, Águas e Saneamento pela UFBA. Professor Assistente da Universidade Federal da Bahia e Engenheiro da Empresa Baiana de Águas e Saneamento S/A.

Endereço⁽¹⁾: Avenida Luís Viana Filho, 3172 – Paralela - Salvador – Bahia - CEP: 41720-200 - Brasil - email: dulce_buente@hotmail.com.

RESUMO

A comunidade de Caípe em São Francisco do Conde - BA não possui sistema coletivo de esgotamento sanitário e as residências utilizam, em sua grande maioria, soluções individuais para o tratamento do efluente doméstico. O objetivo desse artigo é de verificar de forma amostral a condição construtiva e operacional de um tanque séptico existente na comunidade de Caípe (município de São Francisco do Conde/BA). A inspeção do tanque séptico possibilitou a identificação das divergências construtivas existentes entre a NBR 7229/1993 e a realidade construtiva avaliada. O modelo avaliado não atende às especificações construtivas e operacionais do tanque séptico defendidas pela NBR 7229/1993, como: dimensões, dispositivos de entrada e saída, aberturas de inspeção, procedimento e acesso à limpeza dos tanques, e disposição de lodo e escuma. Apesar da ABNT (1993) orientar o auxílio por parte do Município, Estado ou União na construção, operação e manutenção dos tanques sépticos, o mesmo normalmente é desenvolvido de forma individual, sem seguir normas técnicas e apoio técnico de quaisquer órgão.

PALAVRAS-CHAVE: Caípe, Inspeção, Tanques Sépticos.

INTRODUÇÃO

O saneamento básico acompanha a evolução das civilizações e apresenta grande importância no combate a doenças de veiculação sanitária e na promoção da qualidade de vida das comunidades urbanas e rurais.

Durante a história da humanidade ações de ordem sanitária foram empregadas, em especial, no combate às epidemias e para obtenção de água. As civilizações greco-romanas, por exemplo, construíram sistemas de esgotamento, banhos públicos e também sistemas de aquedutos para captação de água em mananciais distantes. Nas Eras seguintes a falta de saneamento, devido a não propagação dos conhecimentos, foi responsável pela proliferação de grandes epidemias e crescente índice de mortalidade.

Com o passar dos anos foram iniciadas as primeiras soluções para os problemas oriundos da falta de saneamento básico, contudo, tais soluções não encontram-se disponíveis a toda população, a falta de acesso aos serviços de saneamento básico, considerados essenciais ao ser humano, é uma realidade em escala global, segundo a Organização das Nações Unidas – ONU (2017) onde cerca de 2,5 bilhões de pessoas ainda sofrem com a indisponibilidade desses serviços.

No Brasil, os serviços de saneamento básico seguem o modelo empregado pelo PLANASA, não atendendo de forma uniforme à população, onde são priorizados os grandes centros urbanos e metrópoles, em detrimento das comunidades rurais e aglomerados subnormais que abrigam famílias de baixa renda instaladas nas periferias. Esse elevado contingente populacional dificulta a disseminação de infraestrutura para atender a resultante demanda de serviços de ordem sanitária.

No país, o serviço de abastecimento de água tem prioridade na oferta, e os serviços de coleta, tratamento e disposição final do esgoto, são direcionados prioritariamente às regiões de importância econômica/turística. O sistema coletivo de esgotamento sanitário caracteriza-se por ser de elevado custo o que inviabiliza o atendimento das comunidades mais isoladas e de baixa renda.

Desta forma, as comunidades rurais e menores núcleos urbanos podem ter soluções individuais de esgoto, entre elas, a solução do tanque séptico que apresenta custos reduzidos de instalação e uma eficiência satisfatória para a localidade. Neste sentido, no que tange ao esgotamento sanitário, a oferta do sistema coletivo, em comunidades rurais e de baixa renda, é escasso e ineficiente, sendo recomendado para tratamento primário o uso de tanques sépticos como solução uma vez que apresenta bons resultados na redução da matéria orgânica e sólidos sedimentáveis e de fácil construção.

Como forma de minimizar os impactos sobre o meio ambiente e tornar o sistema de tratamento de efluente padronizado, a ABNT/NBR 7229/1993 apresenta as condições específicas para o projeto, construção e operação de tanques sépticos, que dentre os sistemas mais usuais no Brasil, possui boa eficiência de tratamento e emprega técnicas construtivas simples.

A abrangência dos serviços de esgotamento sanitário apresenta um déficit nas áreas periféricas e regiões menos desfavorecidas do País, em especial, Norte e Nordeste. O serviço de esgotamento sanitário é um dos menos ofertados, com alcance apenas em 72,4% dos municípios brasileiros (SNIS, 2016). No estado da Bahia, apesar da execução dos Programas Bahia Azul e Projeto Água para Todos – PAT, seu desempenho no cenário de Saneamento Básico, a nível nacional, ainda apresenta grande lacuna, onde somente 51,0% dos municípios do estado são contemplados com a coleta dos efluentes gerados e destes, apenas, 20% possuem tratamento dos efluentes coletados (IBGE, 2011). Este panorama proporciona o uso dos sistemas individuais de esgotamento em muitas de suas comunidades, estando, a fossa absorvente, presente em 30% dos municípios e o tanque séptico em menos de 10% das comunidades (IBGE, 2013).

A comunidade de Caípe em São Francisco do Conde-BA não possui sistema coletivo de esgotamento sanitário e as residências utilizam, em sua grande maioria, soluções individuais para o tratamento do efluente (IBGE, 2015).

O objetivo desse artigo é de verificar de forma amostral a condição construtiva e operacional de um tanque séptico existente na comunidade de Caípe (município de São Francisco do Conde/BA), e compará-los com o que preconiza a ABNT por meio da NBR 7229/1993 que apresenta as condições específicas para o projeto, construção e operação de tanques sépticos.

MATERIAIS E MÉTODOS

A pesquisa desenvolvida para um trabalho de conclusão de curso de graduação em Engenharia Sanitária e Ambiental empregou o método hipotético-dedutivo, definido por Karl Popper, a partir da comparação entre o conteúdo existente em referências bibliográficas acerca do tema e o resultado da observação realizada na comunidade de Caípe (GIL, 1999).

A mesma caracteriza-se como pesquisa descritiva no formato de estudo de caso, visto que, envolve um problema específico de interesse local, ao trabalhar com o saneamento básico, descrevendo as características do sistema local de tratamento de esgoto adotado pela comunidade de Caípe (São Francisco do Conde – BA), bem como, a investigação direta da relação entre o sistema supracitado e a comunidade em estudo (GIL, 2009).

A pesquisa desenvolve-se com base na técnica de investigação qualitativa, visto que, compreende o contato direto do pesquisador com o objeto de estudo (GODOY, 1995), ao avaliar as condições atuais das fossas instaladas em Caípe (São Francisco do Conde – BA). Foram realizados os seguintes procedimentos técnicos, segundo Gil (2009):

PESQUISA BIBLIOGRÁFICA

A pesquisa bibliográfica compreende o levantamento de material elaborado e publicado constituído, em especial, de livros e artigos científicos (JACOMEL, 2009). Neste contexto foram selecionadas referências

teóricas publicadas que elucidam acerca do histórico do Saneamento Básico no Brasil e na Bahia (desde o processo de urbanização à promoção dos serviços de saneamento básico nas regiões periféricas) e dos sistemas de esgoto individuais e públicos, bem como, as normas técnicas para o desenvolvimento de projeto, construção e operação de unidades de tratamento local de esgotos.

PESQUISA DOCUMENTAL

Conforme Gil (2009), a pesquisa documental assemelha-se a pesquisa bibliográfica, entretanto caracteriza-se por materiais que não receberam tratamento analítico ou que podem ser reelaborados a partir dos objetivos da pesquisa. Desta forma, foram analisadas informações de instituições de pesquisa a fim de avaliar os relatórios e documentos por elas produzidos que apresentaram dados relevantes à pesquisa em questão.

ESTUDO DE CAMPO (DADOS PRIMÁRIOS)

Este tipo de pesquisa desenvolve-se, segundo Gil (2009, p. 53): "[...] por meio da observação direta das atividades do grupo estudado e de entrevistas com informantes para captar suas explicações e interpretações do que ocorre no grupo", obedecendo a uma perspectiva qualitativa.

Para a coleta de dados primários do estudo de campo foi utilizada como instrumento a técnica de interrogação, a saber: formulário, que assemelha-se a um questionário, todavia, com a presença do pesquisador para o registro das respostas (GIL, 2009). A aplicação do mesmo objetivou verificar a percepção dos moradores acerca das condições de construção e operação das fossas desenvolvidas na comunidade de Caípe (São Francisco do Conde – BA).

A aplicação dos formulários aconteceu na localidade de Caípe no dia 19 de outubro de 2015. A referida aplicação foi realizada a partir da técnica de amostragem aleatória simples, onde a escolha dos interrogados consiste na retirada de uma parte dos elementos que constituem um conjunto a fim de obter informações sobre o todo (GIL, 1999). Foram aplicados 22 questionários (com 28 perguntas cada), contudo, priorizou-se a aplicação dos formulários em duas regiões específicas: em localidades próximas ao centro do distrito e também nas áreas mais periféricas, visto que, nas periferias existem pessoas com menos condições financeiras que reflete diretamente nas técnicas construtivas e operacionais aplicadas às fossas desenvolvidas. A amostra foi estabelecida com base no Censo Demográfico de 2010, disponível pelo IBGE (2015), onde apresenta, para o setor censitário da localidade de Caípe, 70 residências com a destinação empregada aos efluentes domésticos por meio de fossa séptica. Assim a amostra tem um significado representativo considerando um trabalho de conclusão de curso de graduação.

Além da aplicação do formulário para avaliação da percepção dos moradores, efetuou-se uma inspeção em 02 tanques sépticos instaladas na comunidade com o propósito de verificação do aspecto construtivo das mesmas e posterior comparação com o proposto por ABNT (1993). Esse artigo tem a intenção de avaliar as condições de projeto e apresentar com detalhes as condições construtivas e operacionais encontradas em um dos tanques sépticos avaliados.

RESULTADOS E DISCUSSÃO

A comunidade de Caípe consiste num subdistrito da cidade de São Francisco do Conde – Bahia, a aproximadamente 57 km da capital, Salvador, e encontra-se às margens da Avenida Milton Bahia Ribeiro (BA – 523). A comunidade em estudo apresenta como principal alternativa de tratamento e destinação final o sistema individual de fossa séptica, segundo o Censo 2010 realizado pelo IBGE (2015) ao divulgar, para o setor censitário nº 292920610000002, as alternativas listadas na Tabela 1 para destinação de seus efluentes domésticos:

Tabela 1: Destinação do Efluente Doméstico do setor censitário nº 292920610000002.

DESTINAÇÃO DO EFLUENTE DOMÉSTICO	NÚMERO DE RESIDÊNCIAS	
Fossa Rudimentar	01	
Fossa Séptica	69	
Rede Geral de Esgoto ou Pluvial	04	
Rio, Lago ou Mar	68	
Vala	08	
Outros	02	
Total	152	

Fonte: IBGE, 2015.

A partir da análise dos questionários de vinte e dois moradores de Caípe concluiu-se que vinte deles apresentavam fossas rudimentares, como processo de disposição final. Na Tabela 1 mostra-se que só existia 01 fossa rudimentar na comunidade. Evidencia-se também que apesar de um contingente amostral pequeno (22 moradores), os entrevistados utilizam em sua maioria de fossas absorventes (20 moradores) para disposição dos seus efluentes, entretanto o IBGE afirma que, para o mesmo setor censitário, 45,39% da população estudada utiliza o sistema de tanque séptico, resultado não condizente com a pesquisa realizada, que mostra que a maioria das fossas são absorventes. Sendo assim, os residentes demonstram não dissociar o conceito de fossa absorvente e tanque séptico, tal entendimento foi possível diante da comparação entre os resultados adquiridos pala presente pesquisa.

Os únicos dois tanques sépticos localizados na comunidade foram pedidos a permissão aos moradores para avaliação construtiva dos mesmos. Esse fato foi facilitado devido ao pesquisador possuir família dentro da comunidade.

O tanque séptico estudado é alimentado pelos efluentes oriundos da cozinha, lavanderia e banheiros, apresenta 03 anos de uso e atende um domicílio, no 1º andar de um terreno, com 04 residentes, localizado a beira mar, conforme apresenta a Figura 1.

Para avaliação qualitativa das condições atuais de construção e operação do tanque séptico é preciso estabelecer uma relação entre a mesma e as especificações técnicas exigidas pela ABNT (1993) expressas nas seguintes etapas:

- Distâncias mínimas do tanque séptico às construções, árvores, poços e corpos d'água;
- Dimensionamento do tanque séptico a partir das medições reais das fossas em estudo;
- Medidas internas mínimas para um tanque séptico;
- Relações de medidas entre os dispositivos de entrada e saída do tanque séptico;
- Relações de distribuição e medidas das aberturas de inspeção;
- Manutenção do tanque séptico.

Figura 1 - a) Sistema Fossa câmara única; b) Entrada do efluente; c) Saída do efluente; d) Acesso para sucção.

Quanto às distâncias mínimas o dispositivo atende as exigências da ABNT (1993) a quaisquer outras construções, árvores, poços e corpos d'água, conforme Tabela 2.

Tabela 2 – Distâncias mínimas estabelecidas pela ABNT (1993).

ESTRUTURA	ABNT (1993) DISTÂNCIAS MÍNIMAS	NÚMERO DE RESIDÊNCIAS
Construções, limites de terreno, sumidouros, valas de infiltração e ramal predial de água.	1,50 m	01
Árvores e qualquer ponto de rede pública de abastecimento de água.	3,0 m	69
Poços freáticos e corpos de água de qualquer natureza.	15,0 m	04

Fonte: adaptado do ABNT (1993).

Para o cálculo do dimensionamento do tanque séptico estudado foram consideradas as informações retiradas em campo a partir do "check list" de inspeção e das representações gráficas dispostas nas Figuras 2 a 6.

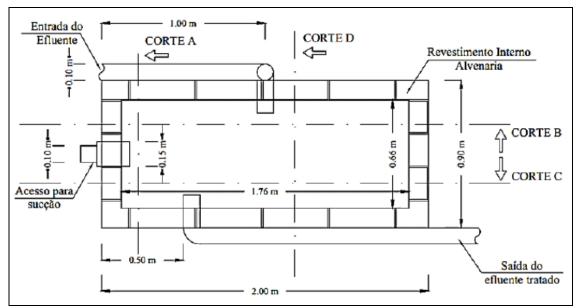


Figura 2 - Planta baixa do tanque séptico. Fonte: Autores, 2015.

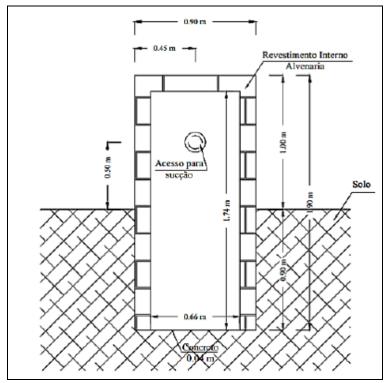


Figura 3 - Corte A do tanque séptico. Fonte: Autores, 2015.

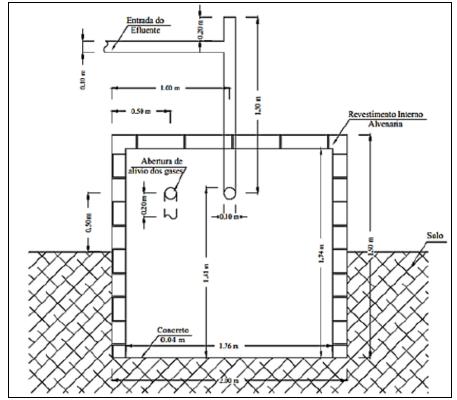


Figura 4 - Corte B do tanque séptico. Fonte: Autores, 2015.

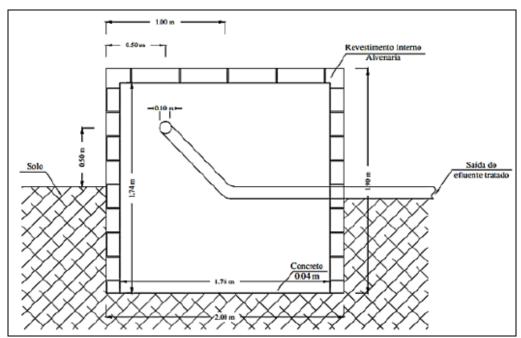


Figura 5 - Corte C do tanque séptico. Fonte: Autores, 2015.

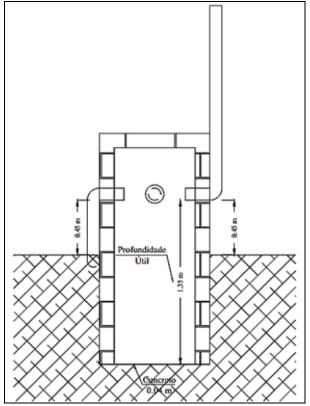


Figura 6 - Corte D do tanque séptico. Fonte: Autores, 2015.

Com base nas Figuras 2 a 6 pode-se caracterizar o tanque séptico como um modelo de câmara única onde são desenvolvidos os processos de digestão, decantação e armazenamento do lodo e da escuma. Por esta razão será realizado o cálculo de Volume Útil (V) a partir da Equação 1.

$$V = 1000 + N (CT + KLf)$$
 (Equação 1)

Com a finalidade de análise mais ampla das qualidades operacionais da fossa avaliada estabeleceu-se as seguintes condições de estudo:

- T (tempo de detenção do efluente) de 24 (01 dia) e 12 horas (0,5 dia);
- K (intervalo entre limpezas do tanque) de 01 e 05 anos;
- N (População) de 04 pessoas;
- C (Coeficiente percapita) de 100 L/hab.dia;
- Lf (Coeficiente de lodo fresco) de 1L/hab.dia.

Para cálculo do volume útil da fossa estudada foram consideradas as informações coletadas in loco a partir da inspeção. O cálculo do volume útil a partir da Equação 1 considerou 04 situações possíveis, conforme Tabela 3, tendo-se sempre a temperatura da localidade no mês mais frio maior que 20oC.

Tabela 3 – Valores de V (Volume Útil) para as condições estabelecidas da Fossa 01.

		VALOR DE K - TAXA DE	VOLUME ÚTIL	
	CONDIÇÕES	ACUMULAÇÃO TOTAL DE LODO (DIAS)	LITROS	M^3
1ª	T1 = 01 dia e $L1 = 01$ ano	57	1628	1,628
2ª	T1 = 01 dia e $L2 = 05$ anos	217	2268	2,268
3ª	T2 = 0.5 dia e L1 = 01 ano	57	1428	1,428
4 ^a	T2 = 0.5 dia e L2 = 05 anos	217	2068	2,068

Fonte: Autores, 2015.

A partir de tais resultados calculou-se o volume útil real do tanque séptico por meio do método geométrico (com base nas medidas apresentadas nas Figuras 2 a 6), conforme a seguir:

$$V = 0.66 \times 1.76 \times 1.41 = 1.638 \text{ m}^3$$

O volume útil de 1,638 m3 disponível no tanque séptico quando comparado os valores expressos na Tabela 2 permite concluir que tal sistema somente estará operando com esperada eficácia quando submetido às condições 1ª e 3ª que apresenta o intervalo máximo entre limpezas de 01 ano, quando, na realidade, a fossa está em funcionamento por 03 anos consecutivos sem limpeza. O efluente gerado pela referido tanque séptico não passa por tratamento complementar ou disposição final, o mesmo é direcionado para o mar, tornando o impacto sobre o meio ambiente mais agravante.

Quanto a profundidade útil a ABNT (1993) apresenta uma faixa aceitável para a profundidade útil do tanque de acordo com o valor obtido no cálculo de volume útil, assim sendo, a profundidade deve variar entre 1,20 m a 2,20 m. Para avaliação da profundidade útil da fossa estudada considerou a definição apresentada pela ABNT (1993, p. 02): "Medida entre o nível mínimo de saída do efluente e o nível da base do tanque", que apresenta o valor de 1,35 m, conforme Figura 6, enquadrando-se na normatização.

Quanto ao diâmetro e largura interna mínima, o dimensionamento do tanque séptico compreende o atendimento das medidas internas mínimas, onde a relação comprimento/largura deve atender 2:1 a 4:1, sendo a largura interna deve medir, no mínimo, 0,80 m.

Tais medidas são evidenciadas na Figura 2, onde o comprimento interno mede 1,76 m e a largura interna mede 0,66 m. A relação entre as medidas apresenta2,66: 1, que esta inserida no intervalo exigido pela ABNT (1993), entretanto a largura interna não obedece o mínimo estabelecido pela norma para o correto funcionamento do sistema de tratamento.

Quanto aos dispositivos de entrada e saída, a configuração dos dispositivos de entrada e saída do tanque séptico não atendem ao determinado pela ABNT (1993), pois os mesmos devem ser constituídos de tês ou septos, a fim de atender os objetivos que se seguem: permitir a passagem dos gases através de aberturas na parte superior das tubulações de entrada e saída, acima da lâmina liquida; permanência do esgoto no interior da fossa pelo tempo necessário (tempo de detenção); e impedir a saída da escuma.

A Figura 2 apresenta os dispositivos de entrada e saída existentes no tanque séptico apresentam-se como uma única tubulação sem qualquer tipo de acessório de direcionamento de fluxo, que compromete o alcance dos objetivos associados à importância de tais dispositivos. Outro fator que prejudica a eficácia da fossa é a posição desses dispositivos, no modelo estudado os mesmos estão localizados no sentido da largura do tanque séptico, o que causa uma redução no tempo de detenção do esgoto, pois não aproveita a extensão total do tanque séptico.

Quanto às aberturas de inspeção a ABNT (1993) determina que o tanque séptico tenha, no mínimo, uma abertura de inspeção, que seja suficiente para a remoção do lodo e da escuma acumulados, bem como, a desobstrução dos dispositivos internos, e que tais acessos apresentem diâmetros mínimos de 0,60 m. O modelo em estudo apresenta apenas um acesso direcionado para possíveis sucções do lodo e escuma que não atende as exigências da Norma, uma vez que, apresenta diâmetro de 0,15 m, quando essa dimensão deveria ser 04 vezes maior.

Quanto aos procedimentos construtivos a estabilidade do tanque séptico esta inteiramente associada à espessura de suas paredes de sustentação, para construções em alvenaria de tijolo (como o modelo em estudo) a ABNT (1993) orienta a espessura de 20 cm a 22 cm, fora o revestimento. Contudo, o tanque em questão apresenta 12 cm de espessura em suas paredes, o que não assegura a estabilidade do sistema.

No que diz respeito à manutenção, segundo ABNT (1993), o procedimento de limpeza dos tanques deve ser realizado durante o intervalo de 1 a 5 anos de uso do sistema, entretanto no tanque séptico estudado tal processo não foi realizado, o que prejudica a eficiência do sistema, visto que, a limpeza deveria ser realizada no 1o ano de uso, como expresso matematicamente quando do cálculo do volume útil.

CONCLUSÕES

O referencial teórico apresenta uma série normativa que fornece alternativas técnicas consideradas viáveis para proceder ao tratamento primário do esgoto e sua disposição final. Na comunidade de Caípe, os processos de construção, operação e manutenção dos sistemas individuais de esgotamento sanitário são desenvolvidos pela própria população de forma empírica, apoiada nas experiências e conhecimentos adquiridos durante toda a vida e passados de geração para geração.

Com base no tanque séptico analisado verificou-se que não houve nenhum amparo normativo que assegure a eficiência de tratamento e a redução dos impactos causados por esta tecnologia ao meio ambiente, à saúde e a qualidade de vida dos usuários.

Para alcançar a melhor eficiência no sistema individual de esgotamento sanitário proposto, as bibliografias consultadas apresentam como solução o sistema tanque séptico e sumidouro, onde o primeiro realiza o tratamento primário do efluente e o segundo a disposição final, por meio da infiltração controlada do efluente tratado no solo. Porém, observou-se que tal sistema não é empregado na área estudada de Caípe, pois os efluentes das fossas são, em sua maioria, descarregados no mar ou são infiltrados pela própria fossa (fossa absorvente ou fossa negra), e o lodo estabilizado também é mantido na fossa de origem até que a mesma se torne inutilizada e assim seja necessária a construção de uma nova estrutura.

Quanto à percepção dos moradores, os mesmos entendem como tanque séptico o poço absorvente que não é uma solução de tratamento primário, mas sim, uma alternativa de disposição do efluente, e não conseguem dissociar o conceito de fossa absorvente e tanque séptico. Tal entendimento foi possível diante da comparação entre os resultados adquiridos pela presente pesquisa e pelo Censo Demográfico 2010 realizado pelo IBGE (Tabela 1). Apesar da ABNT (1993) exigir o auxílio e orientação por parte do município, estado ou União à construção, operação e manutenção dos tanques sépticos, a comunidade estudada desenvolve de forma individual e sem apoio técnico os mesmos, podendo estar exposta aos riscos de contaminação de doenças de veiculação sanitária, quando tais riscos poderiam ser evitados se houvesse o acompanhamento e aconselhamento técnico sobre o tratamento de esgoto mais adequado para a comunidade e a melhor forma de construção e operação, de modo a prevenir impactos à saúde e ao meio ambiente.

A inspeção do tanque séptico apresentado nesse artigo possibilitou a identificação das divergências construtivas existentes entre a NBR 7229/1993 e o dispositivo construído. Um dos únicos modelos de tanque séptico existentes na região (a maioria são fossas absorventes), ainda que impermeável, possui seu efluente lançado ao mar e não atendem às especificações construtivas e operacionais do tanque séptico defendidas pela NBR 7229/1993, como: distâncias mínimas permitidas, dimensões, dispositivos de entrada e saída, aberturas de inspeção, procedimento e acesso à limpeza dos tanques e disposição de lodo e escuma.

O tanque séptico é uma unidade primária de tratamento de esgoto que promove a redução da matéria orgânica, da demanda bioquímica de oxigênio e sólidos sedimentáveis, e o seu uso em condições estabelecidas por Norma, e em conjunto com o sumidouro pode proporcionar melhoria na qualidade de vida da comunidade de Caípe que mantém um contato direto com o mar para banho e pesca, sendo assim, seria importante o acompanhamento e aconselhamento técnico da PMSFC sobre a melhor forma de construção e operação dos tanques sépticos, de modo a contribuir com a redução de carga orgânica aos corpos hídricos, sendo benéfico ao meio ambiente e consequentemente à saúde da população, enquanto não são implantadas redes coletoras de esgotamento sanitário por parte do prestador de serviço estadual.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ABNT, Associação Brasileira de Normas Técnicas. NBR 7229: Projeto, construção e operação de sistemas de tanques sépticos. Rio de Janeiro, 15 p, 1993.
- 2. GIL, A. C. Como elaborar projetos de pesquisa. 4ª. edição. São Paulo: Editora Atlas, 175 p., 2009.
- 3. GIL, A. C. Métodos e técnicas de pesquisa social. 5. ed. São Paulo: Editora Atlas S.A., 206 p.,1999.
- 4. GODOY, A. S. A pesquisa qualitativa e sua utilização em administração de empresas. Revista de Administração de Empresas, SciELO Brasil, v. 35, n. 4, p. 65–71, 1995. Disponível em: http://www.scielo.br/pdf/rae/v35n4/a08v35n4.pdf>. Acesso em: 29 ago. 2015.

- 5. IBGE, Instituto Brasileiro de Geografia e Estatística. Atlas do Censo Demográfico 2010. Rio de Janeiro, 2013. 156 p. Disponível em: http://censo2010.ibge.gov.br/apps/atlas/>. Acesso em: 09 mai. 2017.
- 6. IBGE, Instituto Brasileiro de Geografia e Estatística. Atlas do Saneamento 2011. Rio de Janeiro, 2011. 268 p. Disponível em: http://biblioteca.ibge.gov.br/pt/biblioteca-catalogo?view=detalhes&id=253096>. Acesso em: 09 mai. 2017.
- 7. IBGE, Instituto Brasileiro de Geografia e Estatística. Censo 2010. 2015. Disponível em: http://www.censo2010.ibge.gov.br/painel/?nivel=st. Acesso em: 30 ago. 2015.
- JACOMEL, J. Metodologia da Pesquisa Científica. [S.1.]: Rede FTC, 2009.
- 9. ONU. Organização das Nações Unidas. Países precisam ampliar compromisso com oferta de água e saneamento, diz relator da ONU. 2017. Disponível em: < https://nacoesunidas.org/paises-precisam-ampliar-compromisso-com-oferta-de-agua-e-saneamento-diz-relator-da-onu/>. Acesso em: 09 mai. 2017.
- 10. SNIS. Sistema Nacional de Informações sobre Saneamento. Diagnóstico dos Serviços de Água e Esgotos 2014. Brasília, 2016. 212 p. Disponível em: http://www.epsjv.fiocruz.br/upload/Diagnostico_AE2014.pdf Acesso em: 09 mai. 2017.