

II-059 - REMOÇÃO DE AMÔNIA POR ADSORÇÃO COM ARGILA BENTONITA

Juliana Dotto(1)

Engenheira Química pela Universidade Federal do Paraná (UFPR). Mestre e doutoranda em Engenharia Química pela Universidade Estadual do Oeste do Paraná (UNIOESTE) – Campus Toledo. Integrante do GCatProBio – Grupo de Catálise e Produção de Biocombustíveis da UFPR.

Aline de Pauli⁽²⁾

Engenheira Química, mestre e doutoranda em Engenharia Química pela Universidade Estadual do Oeste do Paraná (UNIOESTE) – Campus Toledo.

Fernando Rodolfo Espinoza Quiñones(3)

Professor da Universidade Estadual do Oeste do Paraná (UNIOESTE). Graduação em Física pela Universidade Nacional de Engenharia, Lima-Peru (1988). Doutor em Física Nuclear pela Universidade de São Paulo (USP), em 1996. Pós-Doutor em Física Nuclear Aplicada pela Universidade Estadual de Londrina (UEL), em 1997. Formador do Grupo de Pesquisa em Monitoramento e Controle Ambiental. Participante do Núcleo de Biotecnologia e Desenvolvimento de Processos Químicos. Bolsista Produtividade em pesquisa pelo CNPO.

Helton José Alves⁽⁴⁾

Professor Adjunto Nível IV da Universidade Federal do Paraná (UFPR). Diretor de Apoio aos Campi Avançados da UFPR e Diretor técnico-científico da Associação Brasileira de Hidrogênio. Bolsista Produtividade em Pesquisa da Fundação Araucária-PR. Graduação em Química pela Universidade Estadual de Maringá, mestrado (Universidade Federal de Santa Catarina) e doutorado (Universidade Federal de São Carlos) em Engenharia de Materiais. Líder do Grupo de Catálise e Produção de Biocombustíveis da UFPR.

Ítalo Gustavo Vargas Novais⁽⁵⁾

Graduando em Engenharia Química pela Universidade Estadual do Oeste do Paraná (UNIOESTE) – Campus Toledo.

Endereço⁽¹⁾: Rua da Faculdade, 645 – Jardim Santa Maria - Toledo - PR - CEP: 85903-000 - Brasil - Tel: +55 (45) 3379-7094 - Fax: +55 (45) 3379-7092 - e-mail: juliana.dotto.86@hotmail.com

RESUMO

A amônia, contaminante presente em lixiviados de aterros sanitários, causa aumento da toxicidade de efluentes líquidos e consequente contaminação do solo quando da deposição destes. Desta forma, a remoção da mesma se torna de interesse quando em vista o apelo ambiental. Para tanto, se propôs um estudo que utilizou a adsorção com argila bentonita para remoção de amônia de efluente sintético com quantidade similar à presente em lixiviados de aterro sanitário. Assim, caracterizou-se a argila bentonita por Microscopia Eletrônica de varredura, Fisissorção de Nitrogênio, Difração de raios-X, Fluorescência de raios-X e basicidade. O tratamento da solução sintética seguiu um Planejamento Experimental em dois níveis mais ponto central, avaliando-se as variáveis massa de adsorvente, velocidade de agitação e pH e a resposta quantidade de amônia adsorvida. Os resultados mostraram que a variável massa de adsorvente é significativa no processo adsortivo, sendo a massa de adsorvente e a quantidade de amônia adsorvida inversamente proporcionais. O ponto de máxima remoção atingiu uma quantidade de amônia adsorvida de 18,10 mg g^{-1}_{ads} , correspondente a uma redução de 73,27 % deste contaminante.

PALAVRAS-CHAVE: Remoção de Amônia, Argila Bentonita, Adsorção, Planejamento Experimental, Efluente Sintético.

INTRODUÇÃO

Entre as diversas formas de tratamento de lixiviados de aterro sanitário, a adsorção se caracteriza como uma operação unitária de contato entre sólido e fluido, ocorrendo a transferência de massa da fase fluida para a fase sólida (CAVALLARI, 2012).

Argilas podem ser consideradas promissoras matérias primas para aplicação na remoção de amônia de lixiviados, devido à sua versatilidade e baixo custo. São materiais naturais resultantes da mistura de diversos minerais, argilosos ou não, além de matéria orgânica e outras impurezas. A estrutura, mineralogia e química da superfície das argilas são as responsáveis pelo seu importante papel na área ambiental, e sua utilidade em aplicações ambientais e industriais. A maioria dos argilominerais é composto principalmente por camadas contendo folhas de sílica e alumina, que pertencem à classe dos silicatos de camada ou grupo dos filossilicatos (GARDOLINSKI *et al.*, 2003).

Dentre as mais utilizadas em questões ambientais, a argila bentonita é composta principalmente por montmorilonita, sendo que ambas pertencem ao grupo dos filossilicatos 2:1, cujas placas são caracterizadas por estruturas constituídas por duas folhas tetraédricas de sílica com uma folha central octaédrica de alumina unidas por átomos de oxigênio comuns a ambas as folhas (PAIVA *et al.*, 2008). A bentonita é matéria prima abundante, de baixo custo e viável para processos industriais como tratamento de efluentes por adsorção.

OBJETIVO

O objetivo deste estudo é a remoção da amônia de solução sintética que busca simular a quantidade deste contaminante em lixiviado de aterro sanitário, utilizando como forma de tratamento a adsorção com argila bentonita, tendo como motivação a remoção pela alta toxicidade que a amônia confere a este efluente líquido.

MATERIAIS E MÉTODOS

A argila bentonita utilizada nos estudos foi cedida pelo Centro de Revestimentos Cerâmicos (São Carlos/SP), sendo moída e classificada granulometricamente em peneira de 45 μ m e acondicionada em frasco plástico em local protegido de umidade. A mesma foi caracterizada por Microscopia Eletrônica de Varredura (MEV), Fisissorção de Nitrogênio - método BET, Difração de raios X (DRX), Fluorescência de raios X (FRX) e avaliação de Basicidade com indicadores de Hammett.

A solução sintética de amônia de 1000 mg L⁻¹ foi preparada dissolvendo-se o pó de cloreto de amônio (Anidrol®) em água Milli-Q. A quantificação da concentração final da solução sintética foi determinada pelo método do Fenato.

A solução sintética preparada passou por tratamento por adsorção em shaker Tecnal TE-421, utilizando como adsorvente a argila bentonita caracterizada. Para realização destes experimentos, propôs-se a utilização de um Planejamento Experimental em dois níveis mais ponto central, avaliando-se as variáveis independentes massa de adsorvente, velocidade de agitação e pH sobre o processo de adsorção. O pH da solução sintética foi ajustado com a adição de soluções ácidas ou básicas. A metodologia de superfície de resposta foi usada para obtenção de um modelo matemático empírico que representasse a influência das variáveis independentes no processo de adsorção. As condições experimentais utilizadas foram: 30 mL de volume de solução sintética de amônia, adsorvente com diâmetro 45 µm, temperatura de 30 °C e tempo de adsorção de 24 horas. Após a adsorção, as amostras foram centrifugadas para separação da solução tratada e do adsorvente, sendo a concentração final determinada pelo método Fenato. As variáveis independentes assumiram os valores apresentados na Tabela 1, sendo os experimentos realizados em quadruplicata e octuplicata no ponto central.

Tabela 1: Variáveis codificadas e reais para planejamento experimental.

Massa de adsorvente (g)	1,5	2,25	3
Velocidade de agitação (rpm)	50	100	150
pН	4	6	8

A quantidade de amônia removida pelo adsorvente foi calculada pela equação (1).

$$q = \frac{V_{solução} \cdot (C_i - C_f)}{m_{ods}}$$
 equação (1)

Onde q é quantidade de amônia adsorvida pelo adsorvente, em $mg_{amônia}$ g_{ads}^{-1} ; $V_{solução}$ é o volume de solução sintética de amônia em contato com o adsorvente, em L; C_i é a concentração inicial da solução sintética de amônia, em mg L⁻¹; C_f é a concentração da solução sintética de amônia após tratamento, em mg L⁻¹ e m_{ads} é a massa do adsorvente em base seca, em g.

RESULTADOS E DISCUSSÕES

Numa primeira etapa, caracterizou-se o adsorvente argila bentonita. A Tabela 2 apresenta os resultados obtidos por FRX para a determinação quantitativa do percentual em óxidos presentes na argila bentonita.

Tabela 2 – Resultados da análise de FRX da argila bentonita.

Amostra	SiO ₂	Al_2O_3	Fe ₂ O ₃	TiO ₂	CaO	MgO	K ₂ O	Na ₂ O	BaO	Perda (fogo)
Porcentagem	71,47	13,46	1,29	0,20	1,59	3,79	0,38	1,29	0,03	6,12

Sabe-se que a formação de argilas ocorre pela deposição de minerais, portanto a composição química das mesmas é variável. Seus elementos constituintes têm influência sobre as características de acidez, basicidade, capacidade de adsorção de água, estabilidade, dentre outras. O teor de ferro da argila influencia a interação da mesma com a água, assim como o caráter ácido do material. Já cálcio e magnésio contribuem para o caráter básico de argilas, portanto a maior quantidade de óxidos de cálcio e magnésio em relação ao óxido de ferro indicam a basicidade da argila. Desta forma, a análise da basicidade com indicadores de Hammett permitiu a confirmação da presença de sítios básicos na argila bentonita. Os resultados, apresentados na Tabela 3, mostram que, para valores maiores de pK_{BH}, tais como os dos indicadores azul de timol, fenolftaleína, 4-nitroanilina e 2,4-dinitroanilina, não foram detectados sítios básicos para a argila bentonita, o que permite concluir que a mesma não possui sítios ativos básicos com força muito elevada.

Tabela 3 – Quantidade de sítios básicos para cada faixa de pK_{BH} para a argila bentonita

				To a constant p		PBH P	F-BH F		
	рКвн	3,3 (Amarelo	6,8 (Vermelho	8,8 (Azul	9,8	15 (2,4-	18,4 (4-	Total	
		dimetil)	neutro)	de timol)	(Fenolftaleína)	Dinitroanilina)	nitroanilina)		
Ī	Sítios	0,1194	0,0587	-	-	-	-	0,1781	

Os resultados de Fisissorção de Nitrogênio, apresentados na Tabela 4, mostram que a argila bentonita possui consideráveis área superficial e volume do poro, o que mostra seu potencial como adsorvente. Já o diâmetro do poro indica mesoporos (diâmetro entre 20 Å e 500 Å) (TEIXEIRA *et al.*, 2001).

Tabela 4 – Área superficial, volume do poro e diâmetro do poro para a argila bentonita.

institution superincian,	rotative do poro e diministro do poro	puru u ur gru » critoriuu
Área superficial (m² g-1)	Volume do poro (c ³ g ⁻¹)	Diâmetro do poro (Å)
46.008	0.113	36,74

A técnica de DRX foi utilizada para a determinação qualitativa das fases cristalinas presentes na argila bentonita. A Figura 1 apresenta os resultados obtidos, evidenciando as fases cristalinas Montmorilonita (M: Na-Mg-Al-Si₄O₁₁) a 7,2°, 18,5°, 20°, 28° e 35°, Quartzo (Q: SiO₂) a 21° e 27° e Albita (A: Na(AlSi₃O₈) a 22°, 29,5° e 36°.

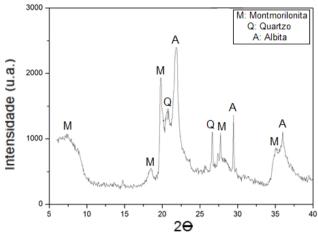


Figura 1 – Difração de raios X para a amostra de argila bentonita.

O primeiro plano difrator da Montmorilonita, em $2\Theta = 7.2^{\circ}$, corresponde ao espaçamento basal da bentonita, isto é, d_{001} =12,3 Å, determinado a partir da Lei de Bragg. Espaçamentos basais de aproximadamente 12,5 Å configuram que o cátion intercalar da argila é o Na⁺ (SILVA *et al.*, 2002). A largura do espaçamento basal d_{001} indica a pureza da amostra. Quanto mais puro o material, mais estreito o pico (ADAMCZEVSKI, 2016), o que indica um certo grau de impureza na amostra de bentonita. Além disto, a maioria dos picos observados na Figura 1 são mais largos e menos intensos, demonstrando um material mais amorfo que cristalino.

Realizou-se a análise por microscopia eletrônica de varredura para observação das características superficiais da amostra analisada. O resultado obtido está apresentado na Figura 2, onde se observou a presença de folhas com formatos de rosetas, usuais em argilas do tipo esmectita.

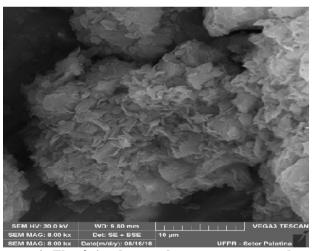


Figura 2 – Microscopia Eletrônica de varredura para a amostra de argila bentonita.

Após a caracterização do adsorvente, procedeu-se o tratamento do efluente sintético de amônia utilizando um planejamento completo em dois níveis mais ponto central para as variáveis massa de adsorvente, velocidade de agitação e pH. A Tabela 5 apresenta os valores reais das variáveis e a quantidade amônia removida.

Tabela 5 – Matriz do planejamento completo em dois níveis e ponto central em seus valores reais.

Variáveis Resposta							
Massa da adsorvanta (g)	Variáveis Variáveis						
Massa de adsorvente (g) pH		Velocidade de agitação (rpm)	q (mg g ⁻¹)				
1,5	4	50	15,70				
1,5	4	50	14,38				
1,5	4	50	16,14				
1,5	4	50	15,84				
3	4	50	9,45				
3 3	4	50	9,96				
3	4	50	9,47				
	4	50	8,58				
1,5	8	50	18,16				
1,5		50	19,84				
1,5	8	50	18,99				
1,5	8	50	15,40				
3	8	50	9,60				
3	8	50	9,02				
3	8	50	10,06				
3	8	50	9,76				
1,5	4	150	14,33				
1,5	4	150	13,73				
1,5	4	150	21,13				
1,5	4	150	20,90				
3	4	150	8,77				
3	4	150	8,81				
3	4	150	9,35				
3	4	150	9,27				
1,5	8	150	16,88				
1,5	8	150	17,27				
1,5	8	150	13,64				
1,5	8	150	13,34				
3	8	150	9,93				
3	8	150	10,08				
3	8	150	8,67				
3 25	8	150	8,43				
2,25	6	100	10,47				
2,25	6	100	11,09				
2,25	6	100	14,87				
2,25	6	100	15,05				
2,25	6	100	10,90				
2,25	6	100	10,95				
2,25	6	100	12,05				
2,25	6	100	12,00				

Para confirmação estatística da influência das variáveis massa de adsorvente, pH e velocidade de agitação no processo de adsorção da amônia com a argila bentonita utilizou-se do Gráfico de Pareto, obtido através do software Statistica 8.0 com nível de confiança de 95% e apresentado na Figura 3. Com o mesmo, observa-se que a dependência funcional da remoção da amônia pela argila bentonita é linear com relação às variáveis analisadas, pois somente a massa de adsorvente (L) é significativa na adsorção, sendo que o valor negativo indica que o aumento desta variável provoca a diminuição da quantidade de amônia removida.

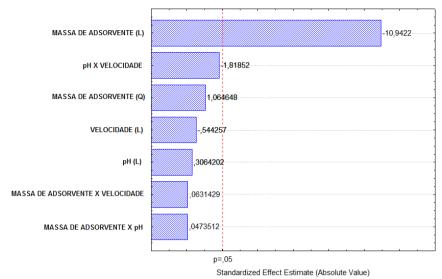


Figura 3 - Gráfico de Pareto para avaliação das variáveis massa de adsorvente, pH e velocidade de agitação na adsorção de amônia pela argila bentonita.

Para a validação estatística do modelo matemático que representa a remoção de amônia, realizou-se a Análise de Variância (ANOVA) da equação do modelo ajustado aos dados. A Tabela 6 apresenta este estudo.

Tabela 6 - Análise de variância ANOVA para efeito da massa de adsorvente, pH e velocidade de

agitação na adsorção da amônia com bentonita com 95% de confiança.

Causas de variação	Soma quadrática (SQ)	Graus de liberdade (GL)	Quadrado médio	$F_{ m tratamento}$	$F_{ ext{tabelado}}$	$rac{F_{tratamento}}{F_{tabelado}}$
Regressão	440,963	7	62,995	17,795	2,314	7,690
Resíduos	113,278	32	3,540			
Total	554,241	39	-			

O valor de F_{tratamento} (17,795) maior que o de F_{tabelado} (2,314) indica que, no intervalo de confiança de 95%, o modelo gerado (equação (3)) representa o processo de adsorção da amônia pela argila bentonita. Valores de F_{tratamento}/F_{tabelado} superiores a 10 indicam que o modelo é fortemente válido. O valor obtido, de 7,690, mostra que o modelo matemático ajustado (Equação (3)) é bastante preditivo para a remoção de amônia com as variáveis analisadas.

$$q = 26,9121 - 11,3059.m$$
 equação (3)

Onde q é a quantidade de amônia removida em mg g_{ads}^{-1} e m é a massa de adsorvente em g.

Utilizando-se o software Statistica 8.0 obteve-se também as superfícies de resposta, apresentadas na Figura 4, que permitem a definição das condições que maximizam a remoção da amônia.

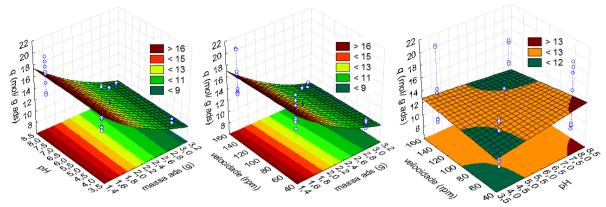


Figura 4 - Superfícies de resposta para a remoção de amônia com argila bentonita.

Nas mesmas é possível perceber que os mais altos índices de remoção ocorrem nos menores valores de massa de adsorvente analisados. O ponto de máxima eficiência (1,5 g, pH 8 e 50 rpm), observado a partir das superfícies de resposta, atingiu uma quantidade de amônia removida de 18,10 $mg \ g_{ads}^{-1}$, reduzindo a concentração na solução mãe de 1244,25 mg L⁻¹ para 332,63 mg L⁻¹ na solução tratada, o que corresponde a 73,27 % de remoção de amônia.

Na Figura 5 é apresentado o gráfico dos valores previstos versus valores observados experimentalmente.

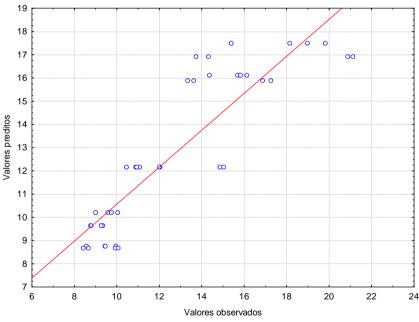


Figura 5 – Valores preditos versus valores observados para a remoção de amônia.

O gráfico indica que os resíduos se distribuem de forma aleatória e não se verifica a presença de *outlier*. Os pontos estão próximos da reta (equação do modelo), mostrando a eficácia do mesmo.

CONCLUSÕES

A argila bentonita se mostrou eficiente na remoção de amônia de efluente sintético que buscou simular a quantidade deste contaminante presente em lixiviados de aterros sanitários. A variável independente massa de adsorvente se mostrou significativa neste processo, sendo que os melhores resultados foram obtidos na menor massa de adsorvente estudada. O modelo matemático ajustado para representar a quantidade de amônia adsorvida pela argila bentonita em função da massa de adsorvente, pH e velocidade de agitação se mostrou

representativo deste processo. O presente estudo mostra o potencial da argila bentonita, matéria prima abundante e de baixo custo, para aplicação como adsorvente em processos industriais

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ADAMCZEVSKI, A.G. *Modificação química de argilas bentoníticas visando seu uso como catalisadores heterogêneos na produção de biodiesel.* Ponta Grossa, 2016. Dissertação de mestrado-Programa de Pós-Graduação em Química Aplicada-Universidade Estadual de Ponta Grossa, 2016.
- 2. CAVALLARI, P.I. Avaliação dos processos de purificação do biodiesel por via seca. Trabalho de Conclusão de Curso Curso de Engenharia Química Universidade de São Paulo, 2012.
- 3. GARDOLINSKI, J.E., FILHO, H.P.M.F., WYPYCH, F. Comportamento térmico da caulinita hidratada. *Química Nova*, v.26, n.1, p. 30-35, feb. 2003.
- 4. PAIVA, L.B.de, MORALES, A.R., DÍAZ, F.R.V. Organoclays: Properties, preparation and applications. Applied Clay Science, v.42, p.8-24, dec. 2008.
- 5. SILVA, F.C.da, FERREIRA, V.F., RIANELLI, R.S., PEREIRA, W.C. Natural clays as efficient catalyst for transesterification of β -keto esters with carbohydrate derivatives. Tetrahedron Letters, v.43, n.7, p.1165-1168, feb. 2002.
- 6. TEIXEIRA, V.G., COUTINHO, F.M.B., GOMES, A.S. The most important methods for the characterization of porosity of styrene-divinylbenzene based resins. Química Nova, v.24, n.6, p.808-818, dec. 2001.